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Therefore, stability in this case is determined by the condition as <Pi 
The temperature in the friction zone is determined by using (l), here not t&e, asymp- 

totic but the exact value of 2 h) corresponding to all poles of J# (ip) should be Bed. 
We present the results of the calculations for z --t op in Table 1. 
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Two families of steady motions of a gyrostat satellite in a central Newto~an force 
field are considered. The plane of the (circular) orbit of the center of mass of the 
satellite is biased relative to the attracting center. 
are derived. 

Sufficient conditions for stability 

These motions complement the numerous alread familiar [*I stead motiotlp of a 
gyrostat satellite with the center of the circular or I!* it coincident with 

x 9 
e attractin 

center. As in the case of the latter motions, the stability conditions in our case di fer 
from those obtained under the restricted formulation of the problem (‘I by quantities 
on the order of P / 1?’ relative to the principal terms (I. is the characteristic dimen- 
sion of the satellite, R is the distance from the attracting center). The orbital plane 
bias is of the order of F / R. These quantities are very small indeed when one is deal- 
in with real artificial earth satellites. 

!I% e present study fs car&d out by the Routi method with the aid of some results 
obtained by Rumianoev [*I. 
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I. We assume that the coordinate system Ot& with its origin at the attracting 
center is inertial. To the satellite we attach the coordinate system &rts~s, directing 
its axes along the principal axes of inertia. We also introduce the orbital coordinate 
system CyIy~, whose axis us is directed along 0~ and whose axis y1 is parallel to 
the plane Out and points in the direction of motion. All of the coordinate systems 
are right-handed and rectangular. 

The position of the satellite body in the coordinate system O{& will be defined 
in terms of the spherical coordinates R, x, o of the center of mass G of the satellite, 

&=Rcoaxdna, 6,=Rdnx, ~=RC(MXC~SO 

and in terms of the Euler angles t&v, 0, defining the position of the coordinate system 
CZ~+~ relative to Cfivsus 

The projections of the gyrostatic moment 4, A,, &, on the axes zl, za, S, are assumed 
constant. 

2. The problem of finding the steady motions of a gyrostat satellite which constitute 
the relative equilibria of the satellite m the orbital coordinate system and that of det- 
ermining the conditions of stabili 
stationary points and conditions o r 

of these motions reduce to the determination of the 
minimul altered potential energy 111 

W (A, X, Br, Bs, YI, v,) = ‘I&= 1 S - u 

K=k-k&-k&,- kd),, S = MRa oos’x + A&’ + A,$,’ + A#,= 

CJ-pMIR- ‘l,pR-’ L&y? + A,y,’ + A,Y,’ - V, (Al + A, + 41 

$a = VI - 81’ - Pa’, Tra = vi - 71’ - ra’ 

Here U is the force function; M, Al, A,, A, are the mass and the central moments 
of inertia of the satellite; p is the gravitational constant; k is the constant of the area 
integral corrrsponding to the cyclical coordinate a; f&, fis, @s and ~1, ya, y8 are the 
direction cosines of the axes gs and ys in the coordinate system G1zrtsts. The varia- 
bles fir, ps, yI, ys, x are related by the expression 

X = BlYl + fJ,Y, + B*Yr - fen 24 = 0 (2.1) 

Introducing the function W = W+Lx (1. is a Lagrange multiplier), we can rewrite 
the equations (in addition to (2.1)) of steady motion of a gyrostat satellite in terms of 

R, x, h, h, ~1, ys, 3, in the form 

awl &fJ?cos’x+M$-+$ (A,-Aa)rz+(Aa-Aa)Tl’+ 
aR=- SI c 

+ 
2As- AI - An 

3 3 
=o 

awl 
-&-+fB%inxCOS* -I,cosn=O 

( - h + &a f 
K’ 

-s’(Al- 

$$+ 
( 

K’ 
-_b,+k+ ---(A,- 

) 
At%++-+o (2.2) 

awl 
-=+Al- 

arl 

awl 
--d-&A,- 
an 

A,)Ts++--&+$=o 
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In addition to those already considered 1’1 for x = 0, Eqs. (2.1) (2.2) also have 
solutions for n # 0 , 

R=R,,X=xe*h=0,@*= cgs#btIco)).0*=~~1~+*~ (2.3) 

A- ~~o~~~~* yr==o,y*= --sin&, (vtS~fk) 

if the constants RI, NO, Qe,oe are related by the expressiom 

o~[~sia(~~+rco)-~CO~~80+~)l+‘~r~’~~s--Al)~2~~+~~+ 

+ %PW (An -AA,)ain2&=0 

Solution (2.3) describes the relative equilibrium of a satellite in an orbital coordina- 
te system rotating at the constant angular velocity o. about the axis fq ; the straight 
line 00 forms a constant angle no with the plane O&t. One of the principal axes of 
inertia zl of the satellite is directed along the velocity of motion of the center of mass 
(the axis n), while the two other axes xs and q lie in the plane ct,ds and form 
the angles & with the axes ys and gs, respectively. The angle %s is of the order 
of F / R* and is maximum for ~0 = s/s. 

The second partial derivatives of the function W’s for the values (2.3) are as follows 
(the missing derivatives are equal to zero): 

SW1 2iuR&Q co9 no MRo’5in 2x0 
aRa&= 

- 
so 2eo5(3o+xo) -(As--4)ain(fL+%I] 

$!I&_ Ml&W sin 2x0 

C 

M&'sin 2% 

SQ 2co~(&,+xg) 
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Provided the area integral is unperturbed, the sufficient condition Is.*] of stability 
of steady motion (2.3) with respect to R, R’, X, W’c 8, W,q,g’, 0, g’, o’ is fulfillment 
of the Sylvester conditions of positive definiteness of the second variation PWl on 
substitution into it of the parameter values given by (2.3), i.e. fulfillment of the equa- 
tion 

For real artificial satellites (I <R) these conditions reduce to the three following 
inequalities: 

PW, SW, a’w, 
*1 = - an’ ‘O* sac 7 -- 

al apl’ 
ba=det (aij I>0 (Olj= "jl; I, i= 1, 2, 3) 

SW, SW, CT’W, 
a11 = w , h=~+cos’&-~j 

flW1 
6%’ + 

cosz efJ SW1 coaelj ew, 
0==- 

cos’ wo + 4 w --2cof@o+%08GF¶ 

(2.5) 

To within terms of the order of Is /R* the inequality a, > 0 is equivalent to o, 
> 0, and conditions (2.5) (the first, third, and second, respectively) coincide with 

the corresponding stability conditions in the restricted formulation of the problem ir] 

Al- Assin*&-- A~coS*%>o, A:$ 

(AI-A,ain’fb- Aacos’kb) As-AI+-&~ 
> 

+3(A1- As)&-A,)ain’&>O 

Violation of conditions (2.5) ensures instability of steady motion (2.3). in which 
case the degree of instability is odd. This occurs when either 8s # 0, r, < 0, ss > 0 

or $1 # 0, r, > 0, 8, < 0. 

3. In the case of a dynamically symmetric satellite (when AI = A, and kr = k, EP 
= 0) we have the additional cyclical coordinate Q. Elimination of the cyclical coor- 
dinates u and 9’ by the South method brings us in this case to the altered potential 

energy I’1 

w (R, x, e,*) = Y# / s1 - (I 

Here 0 is the constant of the cyclical integral corresponding to the cyclical coordi- 
nate Q; the constant 4 enters additively into c. 
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The steady motions of the satellite are defined by the equations 

aE = 
aR 

-$iMRcos’x+ M++3+(Ar-AA,) 

aw ; _=-- 
ax 

Xc(cosOcoax+sinOcosgsinx)+ 

+ A$s(cosBcosx+sinO cosgsin x) 
3 

=0 (3.0 

-c (sin8sinn+cos8cos(Ocosx) + ) 
I 

In addition to the solutions already considered PI for x = 0, Eqs. (3.1) have the 
solution 

R = Ro, n = x0, e=80, *‘=a (3.2) 

if 

In steady motion (3.2) (which constitutes a regular precession of the satellite in 
Koening coordinates) the straight line OC forms a constant angle x0 with the plane 
O& and the axis of dynamic symmetry zr of the satellite lies in the plane Ck~ls, 

forming the angle 8s with the axis ua . As in the previous case, the angle no. is of 
the order of P/R’ and is maximum for 00 = ‘/(n. 

After computing the second partial derivatives of the function W for the values 
(3.2) we can readily deduce the fact that the second variation bw for real satellites 
is positive-definite provided the single inequality 

(3.4) 

is fulfilled. This inequality is therefore the sufficient condition of stability of motion 
(3.2) with respect to R, R’, x! x’, 8, O’, 9, $O’, d, g’ provided the constants ) and c 
are unperturbed. For I 80 I< V,n inequality (3.4) reduces to the condition As > A, 
which coincides with the condition of stability in the restricted formulation of the prob- 
lem. Violation of condition (3.4) with replacement of tire inequality symbol by its 
opposite makes the unperturbed motion unstable. 

4. The Rout& theorem guarantees conditional stability. However, motion (2.3) and 
(3.2) are also unconditionally stable (when the cotuants k and c are perturbed), 
since the Liapuaov addepdum [‘#I to the Routi tfieorem is valid for cfiem by virtue of 
the theorem on implicit functions. In fact, the Jacobiam of system (2.1). (2.2) and 
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system (3. I), given by 

cos’ xg 
- *la* 
Co3 00 

GA (A#O) 

respeftivelF le t sides o 
are different from zero by virtue of conditions (2.5) and (3.4), and the 

Eqs. (2. l), 
tives are continuous in 

ether with their respective partial deriva- 

In general, the Jacobian of 
values (2.3) and (3.2). 

e equations of steady motions in me form (2. l), (2.2). 
or (3.1) coincides with the maximum minor in the criterion I*) for a conditional mi- 
nimum of w or, respectively, in the Sylvester conditions for the positive definiteness 
of @pW. Hence, if we use either the criterion formulated in [*I (or some equivalent 
or coarser conditions) or the conditions of positive definiteness of ew in applying the 
Routh theorem (Theorems 2 and 4 of 1’1 , pp. 16, 20), then the requiremenrs of 
Liapunov’s addendum I’*sl will be fulfilled. 

The same can be said of Routh Theorems 1 and la of I’l* 

5. In each group of conditions (2.4) and (3.3) of existence of solutions (2.3) and 
(3.2) the first relation exp- 
resses the equality to zero 

Fig. 1. 
second condition has been 
divided through by MR. and 

the third by j+f&oss). It should be noted that in the tilted position of the satellite 
which we are considering the sum of projections of the gravitational forces on the axis 

ys is equal to 8/s@s-4 (A, - A~) sin 2& and differs from zero. This results in the 
of motion of the center of mass. The example of a wobbling dumbell- 

1) shows this clearly. 

criticism. 
to V. V. Rumiantsev for the formulation of the problem and his 
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