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Therefore, stability in this case is determined by the condition w «{3;

The temperature in the friction zone is determined by using (1), here not the asymp~
totic but the exact value of & (¥) corresponding to all poles of M () should be used.

We present the results of the calculations for ¥ — oo in Tabie 1.
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Two families of steady motions of a gyrostat satellite in a central Newtonian force
field are considered, The plane of the (circular) orbit of the center of mass of the
satellite is biased relative to the atwacting center. Sufficient conditions for stability
are derived.

These motions complement the numerous already familiar [*] steady motiors of a
gyrostat satellite with the center of the circular orbit coincident with J;e attractin
center, As in the case of the latter motions, the stability conditions in our case differ
from those obtained under the restricted formulation of the problem {*} by quantities
on the order of #/ R? relative to the principal terms ({. is the characteristic dimen-
sion of the satellite, R is the distance from the atwacting center), The orbital plane
bias is of the order of p/ R, These quantities are very small indeed when one is deal-
ing with real artificial earth satellites.

e present study s carried out by the Routh method with the aid of some result
obtained by Rumiansev [*].
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1. We assume that the coordinate system O(,{sls Wwith its origin at the atracting
center is inertial. To the satellite we attach the coordinate system Gz,z4z,, directing
its axes along the principal axes of inertia. We also introduce the orbital coordinate
system Gpy,y, Whose axis y, is directed along QG and whose axis y; is parallel to
the plane Of.¢; and points in the direction of motion, All of the coordinate systems

are right-handed and rectangular,
The position of the satellite body in the coordinate system Ofiyfs will be defined

in terms of the spherical coordinates R, x, s of the center of mass G of the satellite,
$1 = R cosx sins, {, = Rsinx, {;, = Rcosxcoso

and in terms of the Euler angles 0,$, ¢, defining the position of the coordinate system

G124z, relative to Ghvsls
The projections of the gyrostatic moment ky, ky, ky on the axes £y, x4, 25 are assumed
constant,

2. The problem of finding the steady motions of a gyrostat satellite which constitute
the relative equilibria of the satellite in the orbital coordinate system and that of det-
ermining the conditions of stability of these motions reduce to the determination of the
stationary points and conditions of minimul altered potential energy [1]

W (R, %, B1 By Y1, Ya) = Yol /S — U
K =k — k) — ks — ks, S = MR? cos™x + A, + AB,3 + Ay
U=pM/[R —3uR3 [Ay? + AVs! + AgYs' — Ya (A1 + Ay + 4,)]
Bo=¥VI—B"—B Tn=Vi—7n—1

Here U is the force function; M, A4,, 4,, 4, are the mass and the central moments
of inertia of the satellite; p is the gravitational constant; k is the constant of the area
integral corrrsponding to the cyclical coordinate o; f;, By, B3 and y1, ¥s: s are the
direction cosines of the axes {, and y; in the coordinate system Gz z3z,. The varia-
bles fi, By, Y1, Y5, % are related by the expression

% = Pivr + Ba¥s + Baya — 8inx =0 (2.1)

Inwoducing the function W = W+ Ay (A is a Lagrange multiplier), we can rewrite
the equations (in addition to (2, 1)) of steady motion of a gyrostat satellite in terms of

R! %, pll ”l- Y1, Ys A in the form

%%=—’—KST’MRcos’x+M—;,———-g—% [(Ax—Aa)‘n"i'(Aa—Aa)Ta'-i-
+ 2.4.—;1,—,1.] —0
%:%MR‘shxcosx—kcosu:O
%Bl—‘=-§-(—k,+k.-g’—‘)—-§(Ax—Aa)Bx+k('n—'r-~%'-)=0
e (chtn ) - T mntr(nnp)=0 @2
%’;{‘:—‘=3%(A1—Adn+x(m—&%)=0

0 T
-ﬁf=3'%.‘(Aa—As)Ta+l(Bﬂ—ﬂt?:‘)=°
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In addition to those already considered ['] for x = 0, Egs. (2.1) (2.2) also have
solutions for x 0 ,

R = Ry, x = %0, b1 = 0, (By = 08 (s + %)), B3 = sin (Bs 4 x0) 2.3)
A= MRMwé sinxg, 1 = 0, ys = — sin s, (y; = €08 8))

if the constants Re, %o, 0¢,ws are related by the expressions

W [k 8in (B0 + %) — ks €03 (B0 + Xo)] + /yux® (45 — A,) 8in 2 (Bs + %) +
+'/#Ro" (Ay — A5) 8in 200 = 0

0o CO8P g == -ﬁ.- {1 - [(A. — As) 8ind 6 + —:-‘—;“’;‘;?-:—"-‘] } (2.4)

KX,
smzm..%%@%'l “slnﬁ&. k=20 (@o Gn-—-"jf)

Solution (2, 3) describes the relative equilibrium of a satellite in an orbital coordina-
te system rotating at the constant angular velocity we about the axis {, ; the straight
line OG forms a constant angle xp with the plane Of,{,. One of the principal axes of
inertia 2y of the satellite is directed along the velocity of motion of the center of mass
(the axis y;), while the two other axes x, and z; lie in the plane Gy,y, and form
the angles B¢ with the axes y, and y, respectively. The angle xg is of the order
of I8/ R? and is maximum for gy = Y,

The second partial derivatives of the function W, for the values (2, 3) are as follows
(the missing derivatives are equal to zero):

i;g! = R C(.)s?: Xo— 5o Max® cost xo — 2"7{%" +
+ 18—1%3- [(A,— Ay) sin? 8, + z"—";‘:.ﬂ!.]
‘%ﬁ“’= M£°’ @o* (So C08? % -+ MRy sin® 25)
AW, sin By ks
MR T, iy (= M T
LalidS sin By

e = MRoa’ slnnm"f“"’ As) o’ +m&+&)+

©o? [ MRs?sin 2% '
[m-—( :—Aa)sin(ﬂo-i-uo)]

8o
rW ~
a,n: == — M Rog? 8in %o 31“22&;‘8‘&; Xo) + 3 (A‘ —_ A’)
%;Wi'x'=-—MRo‘nx‘sin ie—ég'—;.%?’ +3 g7 L5 (4 — 49)
aa;tv::: — 2 co,;: Xo— 5o MRy0q" 8in 25
W)  2MRywe*cos’xo [ MR*sin 2%
OR0Bs So [2 <08 (B 4 o) — (s — As) sin (B + "o)]
.
il — MR@’@;jln 2%y [zt,::o( 98:3_ 2::) — (As— Ay) sin @+ &)]
AWy 9 (As— A)8in By AW,
Ry Ro* ' Bron = MRg%o sin %,
W, M Ro*an® sin? %

1s . co8 By co8 (Be + %o)
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Provided the area integral is unperturbed, the sufficient condition [t#} of stability
of steady motion (2. 3) with respect to R, R’, %, ¥+ 0, 8",9,%', ¢, ¢, o is fulfillment
of the Sylvester conditions of positive definiteness of the second variation 8*W; on
substitution into {t of the parameter values given by (2. 3), i.e. fulfillment of the equa-
tion

873 = cos Bo8x — a%m 6B

For real artificial satellites (I <€ R) these conditions reduce to the three following
inequalides:

1n*w, awW, W, B’W; \3
o= a0 >0, 8y == Fo B % (aTl aBl) >0 (2.5)
s,=det|a‘.j|>0 (aj=a“; Li=1,2,3)
W Iw W,
an=-W.’-, On="33" > + cos* 6y 37’—,1-
W, cos2 6y AW,y 9 c08 0y AW,
%8 =705 1 (o5 (6o + %) 078 - 08 (0 + %) IPa0Ts
ol 1Y nw _ W, cos By W,
= gh + 080 3Rz W= 3Fo— Tos '(e,‘ '+T,) 3R ars
W, cos? B, IwW,

9= FxdPs ~ €08 (B + %) o1 +°°°°°0ﬂ-0'u

To within terms of the order of P/ R? the inequality # >0 is equivalent to @y
> 0, and conditions (2. 5) (the first, third, and second, respectively) coincide with
the corresponding stability conditions in the restricted formulation of the problem [*]

A1 — A3 SintBy — Aycos?8o >0, A+ m> o

(A1 ~— Ay 8in? 8o — Ay cos* B) (A. — 4t + 3 (A1 — As) (A3 —~ As) 8in? 8 > 0

cos &)

Violation of conditions (2. 5) ensures instability of steady motion (2.3), in which
case the degree of instability is odd. This occurs when either 8,50, 8 <0, 53,>0

or 10, >0, 5 <0.
8. In the case of a dynamically symmeuic satellite (when 4; = A, and & = ky =

= () we have the additional cyclical coordinate ¢. Elimination of the cyclical coor-
dinates @ and ¢ by the Routh method brings us in this case to the altered potential

energy ]
W(R,% 0,9)="K/8 —~U

K=k —cfy S1 = MR cos®% + 4, (1 — By?), Pa = co8 0 sinx — ain @ cosp cos x
U=pM /R + pR™® (A, — A})(1 — ¥/, sin* §)

Here ¢ is the comstant of the cyclical integral corresponding to the cyclical coordi-
nate ¢; the constant k&, enters additively into .
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The steady motions of the satellite are defined by the equations

g;;}'=— §Mncos-x+ M.%-}-S%(AI—A.)(i—-g_sin' a)=o
%P;V=_ Sﬁl.c(cosecosx -+ sin 6 cos P sinx) + .ISL:’[_;_MR‘sin2x+
+ A3Ps (c08 6 cos % - sin § cos P sin x)]=0 (3.1)
%2.’ = — TS‘KT(% A;B;—c)(sinﬁsinu-{-cosecosq)cosx)+
+ %%(A;—A.)sin%:O
%?’:—SI%(—E- ABs _,c) sin®sinypcosx =0

In addition to the solutions already considered ['] for % = 0, Egs. (3.1) have the
solution

R=Ry, %=1, 6=20, ¢$==n 3.2)
if

— o0 €08 (G0 4 %0) + Yy A10o* sin 2 (B0 + x0) + 3/ pRo™® (A, ~ A,) sin 20 = 0

b €083 3 = 7‘%[1 + i%}%"_') (1 ~ 3 sim eo)] 3.3)

lln%=§%“h—o_q|—'mﬁ|ﬂin2eo (ﬁh=co'=£:f)

In steady motion (3.2) (which constitutes a regular precession of the satellite in
Koening coordinates) the straight line OG forms a constant angle %o with the plane
Oy 2nd the axis of dynamic symmetry z, of the satellite lies in the plane Gygy,,
forming the angle 8o with the axis y; . As in the previous case, the angle xo- is of
the order of B/ R? and is maximum for o = ¥/gx.

After computing the second partial derivatives of the function W for the values
(3.2) we can readily deduce the fact that the second variation 8W for real satellites
is positive-definite provided the single inequality

BPW _ap 4. 8in? By cos By cos %
N 3 X (A1 — A) <08 (B F %) >0 (3.4)

is fulfilled. This inequality is therefore the sufficient condition of stability of motion
(3.2) with respect to R, R',x,%’, 8, 0", 9, ¥', o', ¢ provided the constants & and ¢
are unperturbed. For [6o] < '/yn inequality (3.4) reduces to the condition 4, > 4,

which coincides with the conditlon of stability in the restricted formulation of the prob-
lem, Violadon of condition (3.4) with replacement of the inequality symbol by its
opposite makes the unperturbed motion unstable,

4. The Routh theorem guarantees conditional stability. However, motions (2. 3) and
(3.2) are also unconditionally stable (when the constants & and ¢ are perturbed),
since the Liapunov addepdum [1,3) to the Routh theorem is valid for them by virtue of

the theorem on implicit functions. In fact, the Jacobians of system (2. 1), (2.2) and
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system (3.1), given by

€08¥ %q IW
o576, 238y, g A (A£0)

res ective1¥, are different from zero by virtue of conditions (2.5) and (3.4), and the
left sides of Egs. (2.1), (2.2), and (3.1) tofgether with their respective partial deriva-
tives are continuous in the neighborhoods of values (2.3) and (3. 2).

In general, the Jacobian of the equations of steady motions in the form (2.1), (2.2),
or (3.1) coincides with the maximum minor in the criterion [*} for a conditional mi-
nimum of W or, respectively, in the Sylvester conditions for the positive definiteness
of 8*W. Hence, if we use either the criterion formulated in [3] (or some equivalent
or coarser conditions) or the conditions of positive definiteness of 8W in applying the
Routh theorem (Theorems 2 and 4 of ['], pp. 16, 20), then the requirements of
Liapunov's addendum [**} will be fulfilled.

The same can be said of Routh Theorems 1 and 1a of I'}.

5. In each group of conditions (2.4) and (3. 3) of existence of solutions (2, 3) and
(3.2) the first relation exp-
resses the equality to zero
of the sum of moment with
respect to the p; axis of the
gyroscopic, centrifugal, and
gravitational forces applied
to the satellite; the second
and third relations express
the equality of the resultants
of the centrifugal forces (with
the opposite si{gns) and of the
gravitational forces projected
Fig. 1. on the axes y, and y, (the
second condition has been
divided through by MR, and

the third by MRewe?). It should be noted that in the tilted position of the satellite

which we are considering the sum of projections of the gravitational forces on the axis
vs is equal to ¥/ guRe* (A, — A,) sin 28, and differs from zero, This results in the

bias of the plane of motion of the center of mass. The example of a wobbling dumbell-

shaped satellite (see Fig. 1) shows this clearly.
e aunthor is grateful to V, V, Rumiantsev for the formulation of the problem and his

criticism.
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